A Genetic Analysis of Complexin Function in Neurotransmitter Release and Synaptic Plasticity

نویسنده

  • Sarah Huntwork-Rodriguez
چکیده

Information transfer at neuronal synapses requires rapid fusion of docked synaptic vesicles in response to calcium influx during action potentials. The molecular nature of the fusion clamp machinery that prevents exocytosis of synaptic vesicles in the absence of a calcium signal is still unclear. Here we show that complexin, a small alpha-helical protein that binds fully assembled SNARE complexes, functions as the synaptic vesicle fusion clamp in vivo. Drosophila has a single complexin homolog that is abundantly expressed in presynaptic nerve terminals. Animals lacking complexin die throughout development, with adult escapers showing severe locomotion defects and a loss of visual function. Electrophysiological analysis at neuromuscular junctions in complexin null mutants reveals a dramatic increase in spontaneous synaptic vesicle fusion that is independent of nerve stimulation or extracellular calcium. High frequency stimulation at high calcium concentrations shows that the readily releasable pool in complexin mutants is severely depleted. Thus, complexin is required for maintenance of the readily releasable pool of vesicles at the synapse, and without it vesicles exocytose directly after priming. These data indicate that complexin interacts with assembled SNARE complexes to prevent premature vesicle fusion in the absence of calcium entry. In addition, a preliminary analysis of synaptotagmin 1; complexin double mutants reveals that the elevated mini frequency in complexin single mutants is dependent on synaptotagmin 1. This finding suggests that the dominant function of complexin at the synapse is to prevent synaptotagmin 1 from triggering fusion in the absence of calcium. Further analysis of synaptotagmin 1; complexin double mutants may reveal new aspects of the mechanism of the calciumregulated vesicle fusion reaction. Minis have long been thought to represent background noise at the synapse, but there is now growing evidence that mini frequency is important in synaptic maintenance and plasticity. Complexin mutants display a substantial synaptic overgrowth phenotype. We hypothesized that the enhanced mini frequency in complexin mutants drives synaptic overgrowth and that complexin is phosphorylated by PKA to regulate mini frequency at Drosophila synapses in an activity-dependent retrograde signaling pathway that mediates a large increase in mini frequency and a concomitant induction of synaptic growth. Like complexin mutants, a syntaxin mutant with elevated mini frequency also displays enhanced synaptic growth, providing further evidence that an increase in mini frequency drives synaptic plasticity. S126 in complexin is phosphorylated by PKA in vitro. Future results may reveal that S126 is phosphorylated by PKA in vivo to regulate mini frequency in an activity-dependent manner. These results have the potential to reveal a new role for minis in local synaptic plasticity in response to neuronal activity. Advisor: J. Troy Littleton, Associate Professor of Biology

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity

Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less cl...

متن کامل

C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis.

Complexins are small soluble proteins that bind to assembling SNARE complexes during synaptic vesicle exocytosis, which in turn mediates neurotransmitter release. Complexins are required for clamping of spontaneous "mini " release and for the priming and synaptotagmin-dependent Ca(2+) triggering of evoked release. Mammalian genomes encode four complexins that are composed of an N-terminal unstr...

متن کامل

Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix

Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to syna...

متن کامل

A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis

Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca(2+)-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose that complexin binding activates SNARE ...

متن کامل

Unique Structural Features of Membrane-Bound C-Terminal Domain Motifs Modulate Complexin Inhibitory Function

Complexin is a small soluble presynaptic protein that interacts with neuronal SNARE proteins in order to regulate synaptic vesicle exocytosis. While the SNARE-binding central helix of complexin is required for both the inhibition of spontaneous fusion and the facilitation of synchronous fusion, the disordered C-terminal domain (CTD) of complexin is specifically required for its inhibitory funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009